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    Abstract 
Large amounts of spatially referenced data has been 
aggregated in various application domains such as 
geographic information systems (GIS), environmental 
studies, banking and retailing, which motivates the highly 
demanding field of spatial data mining. So far many 
optimization problems have been better solved inspired by 
the foraging behavior of ant colonies. In this paper we 
propose a novel algorithm for the discovery of spatial 
trends as one of the most valuable and comprehensive 
patterns potentially found in a spatial database. Our 
algorithm applies the emergent intelligent behavior of ant 
colonies to handle the huge search space encountered in the 
discovery of this knowledge. We apply an effective greedy 
heuristic combined with the trail intensity being laid by ants 
using a spatial path. The experimental results on a real 
banking spatial database show that our method has higher 
efficiency in performance of the discovery process and in 
the quality of trend patterns discovered compared to other 
existing approaches using non-intelligent heuristics.  
 
1   Introduction  
Many organizations have collected large amounts of 
spatially referenced data in various application areas such 
as geographic information systems (GIS), banking and 
retailing. These are valuable mines of knowledge vital for 
strategic decision making and motivate the highly 
demanding field of spatial data mining i.e., discovery of 
interesting, implicit knowledge from large amounts of 
spatial data �[11]. 

So far many data mining tasks have been investigated 
to be applied on spatial databases. In �[11] spatial 
association rules are defined and an algorithm is proposed 
to efficiently exploit the concept hierarchy of spatial 
predicates for better performance. In �[8] and �[10] 
algorithms are designed for the classification of spatial data. 
Shekhar et al. further improved spatial classification in �[12] 
and also introduced algorithms to mine co-location patterns 
�[9]. Spatial trends are one of the most valuable and 
comprehensive patterns potentially found in a spatial 
database. In spatial trend analysis, patterns of change of 
some non-spatial attributes in the neighborhood of an object 
are explored �[6] e.g. moving towards north-east from the 
city center the average income of the population increases 
(confidence 82%). 

Ester et al. studied this task proposing a general 
clustering algorithm and its application in trend detection 
�[7] and further improved it in �[6] exploiting the database 
primitives for spatial data mining introduced in �[8]. Having 
constructed the neighborhood graph the algorithm proposed 

gets a specified start object o from the user. Then it has to 
examine every possible path in the graph beginning from o. 
For each path it performs a regression analysis on non-
spatial values of the path vertices and their distance from o. 
But the search space soon becomes tremendously huge by 
increasing the size of neighborhood graph and makes it 
impossible to do a full search. In order to prune the search 
space it assumes that a desired trend will never have its 
regression confidence below a user given threshold. As we 
incrementally construct a possible path, we would have to 
resign from further extending it when the regression 
confidence of the current path becomes bellow the 
threshold. But this assumption is a restricting one, as it may 
mislead us by forcing a trend to stop from growth that 
would get much higher confidence if not blocked. 

Many solutions for NP-Complete search and 
optimization problems have been developed based on the 
cooperative foraging behavior of ant colonies �[2]. However 
less attention has been given to apply this powerful 
inspiration from nature in the tasks of spatial data mining. 
In this research we introduce a new spatial trend detection 
algorithm that uses the phenomenon of stigmergy i.e. 
indirect communication of simple agents by means of their 
surrounding environment, observed in real ant colonies �[1]. 
It also combines this behavior with a new guiding heuristic 
that is shown to be effective. We succeeded to handle the 
non-polynomial growth of the search space, and at the same 
time retain the discovery power of the algorithm, by letting 
each ant agent to cooperatively exploit the colonies 
valuable experience. Also in contrast with the algorithm 
proposed in �[6] our algorithm is not dependent on the user. 
It doesn’t get a specified start object from the user nor 
needs it to input a pruning threshold. This brings ease of 
use and wider applicability to our method as its efficiency 
and performance is independent from the user. We have 
conducted some experiments on a real banking spatial 
database to compare the proposed method with the 
algorithm proposed in �[6] which is being widely accepted 
and used. The results show that the proposed algorithm has 
higher efficiency in performance of the discovery process 
and in the quality of trend patterns discovered. 
 
2   Spatial Trend Detection 
Some spatial relations (called neighborhood relations) like 
direction, metric and topological relations between the 
objects are formally defined to be used in spatial data 
mining �[8]. Based on these relations the notions of 
neighborhood graph and neighborhood path are defined as 
follows: 
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DEFINITION 1: let neighbor be a neighborhood relation and 
DB be a database of spatial objects. Neighborhood graph G 
= (N, E) is a graph with nodes N = DB and edges E ⊆ N×N 
where an edge e = (n1, n2) exists iff neighbor(n1, n2) holds. 
 
DEFINITION 2: A neighborhood path of length k is defined 
as a sequence of nodes [n1, n2,…, nk], where neighbor(ni 
,ni+1 ) holds for all ni∈N , 1≤ i < k. 
 

As we have the location dimension in a spatial 
database one useful potential pattern could be the change of 
a non-spatial attribute on a neighborhood path with respect 
to its distance form a reference object. E.g. beginning form 
a trading center in the city and moving on a specific 
highway towards the west, the unemployment rate grows. 
Having available the desired neighborhood graph, the 
notion of spatial trends can be defined as follows �[6]: 
 
DEFINITION 3: A spatial trend is a path on the neighborhood 
graph with a length k of nodes that the confidence of 
regression on its nodes data values and their distance from 
start node (see figure 1) is above a minimum fraction. 
 

 
Figure 1: (a) Regression line for a trend, (b) A direction 

filter 
 

Our example spatial database contains the agency 
locations of a national bank and their various financial data 
like the count and remainder of different kinds of accounts. 
A map of these point and city regions is shown in figure 2. 
A possible trend of 15 nodes is also depicted. 

 

 
    Figure 2: The city regions with bank points 

 
As an example we may want to find trends of the 

number of long term accounts in bank agencies starting 
from arbitrary agency points. Having discovered such 
trends, we can try to explain them by some spatial 
attributes. For example a trend could be matching a road or 

a highway. We can also check if there are any matching 
trends on the same path but in other thematic layers like 
demographic or land use layers. A trend can also predict the 
data value of a new point on its path with a reliability 
fraction equal to the regression confidence. A desired 
informative spatial trend pattern would not be crossing the 
space in an arbitrary manner. So a direction filter (see 
figure 1.a) is applied when forming the path of the trend 
being examined [6, 7]. 

To discover the trends in a neighborhood graph by the 
algorithm proposed in �[6] having a feasible nodes on 
average to extend a path, we would have to meet  an paths 
to examine their regression confidence, where n is the 
maximum trend length. It's impossible to examine this 
amount of paths even for not much large values of n (e.g. 
n=20). This condition gets worse when the user has not any 
specific start object in mind, and wants the algorithm itself 
to check different start objects.  

For efficiency, the algorithm allows a path to be 
extended further by the next set of feasible nodes if its 
current confidence is not bellow the threshold given by the 
user. This heuristic force the search space to become 
smaller but can easily miss a high confidence trend if its 
confidence is bellow the threshold somewhere in the middle 
of its path. In figure 3 a sample of this situation is shown in 
which the algorithm will stop path extension when it is in 
node i as the regression confidence of the path from the first 
node to i is bellow the threshold. However this path would 
have a confidence much higher than the threshold if not 
blocked and continued. 

 
Figure 3: Missing a trend in node i 

 
We have managed to remove this restricting 

assumption by using distributed cooperative ant agents to 
improve the performance of the search process.  
 
3   Ant Colonies for Search and Optimization 
Ant Colony Optimization (ACO) is a new meta-heuristic 
inspired by real ant colonies in nature. Ant colonies 
intelligently solve complex discrete problems like finding 
shortest path although its individuals are very simple and 
not intelligent enough to solve such problems on their own. 
The main underlying idea is to use a multi-agent parallel 
search on the different possible combinations of solution 
components. The decision to choose a component is based 
on a local problem data and a dynamic shared global 
memory of the colony that contains a history on the quality 
of previously obtained results [2, 5].  
 
3.1 ACO Meta-Heuristic. To solve a combinatorial 
optimization problem, the ant agents concurrently move to 



the next state selecting a component and forming a partial 
solution of the problem. This move is done by a stochastic 
decision policy directed (i) by the ant's private information 
(internal state, or memory) and (ii) by publicly available 
pheromone trail and a priori problem-specific local 
information, i.e. the two parameters of trail intensity and 
attractiveness �[2]. For an ant k in state i, the probability to 
choose state j depends on two values: 

• 
ij

η : The attractiveness of the next feasible 

component, which is computed by a problem 
dependent heuristic providing a priori desirability 
of the move. 

• ijτ : The trail intensity of the move that represents 

the quality of the previously evaluated solutions 
containing the component,, thus providing a 
posteriori desirability of the move. 

 
The trail update is usually done when all of the ants 

have finished their incremental solution construction. The 
amount of pheromone to be laid over the components used 
in a solution depends on its quality, defined differently in 
various problems. The whole procedure is iteratively 
repeated in a loop until a stopping criteria is satisfied. Also 
a mechanism of trail evaporation is applied which lets the 
colony to avoid unlimited accumulation of trials over some 
component �[4]. 
 
3.2 ACO for Spatial Trend Discovery. ACO has been 
recently used in some data mining tasks, e.g. classification 
rule discovery �[13]. However considering the challenges 
faced in the problem of spatial trend detection (see section 
2) we can see that ACO can suggest efficient properties in 
these aspects. Firstly as the definition of the problem 
suggests, the ant agents can search for the trend starting 
from their own start point in a completely distributed 
manner. This omits the need to get the start point node from 
the user. Secondly to guide the stochastic search of the ants, 
the pheromone trails can help the ants to exploit the trend 
detection experience of the colony. This guides the search 
process to converge to a better subspace potentially 
containing more and better trend patterns. Finally some 
measures of attractiveness can be defined for selecting a 
feasible spatial object from the neighborhood graph which 
can effectively guide the trend detection process of an ant. 
 
4   ACO Algorithm for Trend Detection 
In our approach for trend discovery different ant agents will 
start form different points of the graph searching for 
increasing spatial trends. Note that each decreasing trend is 
also an increasing one.  
 
4.1  Pheromone Trails. The quality of an ACO application 
depends very much on the definition assigned to the 
pheromone trail. As previously mentioned the ants will 
search for increasing trends only, adding the direction of an 

edge to the properties of the pheromone laid. A pheromone 
trail value is considered for each directed edge of the 
neighborhood graph, making the pheromone matrix 
asymmetric. When an ant is in node Pi and selects Pj as the 
next node, its pheromone is laid on the edge Eij (and not 
Eji). Thus ,i jτ , the amount of pheromone of Eij encodes the 

favorability of selecting node Pj when in node Pi, to form a 
high confidence increasing spatial trend. 
 
4.2   Heuristics for Spatial Trend Detection. Another 
important feature of an ACO application is the choice of a 
good heuristic to incrementally build possible solutions, 
which will be used in combination with the pheromone 
information. We applied two heuristics for guiding the 
discovery of spatial trends. First closer nodes are preferable 
to the ones far from the current node, as they are more 
likely to be correlated. Second we would like the value of 
the next node to match better with an increasing linear 
regression model. This means that we would prefer the 
nodes with a value higher than the last node of the current 
increasing path. To apply this second heuristic we used 
equation 3.2. The heuristic value for selecting node Pj from 
node Pi will be calculated by the following formulas: 

(4.1) 

(4.2) 

(4.3) 
 
Where � and � are the relative importance of distance 
heuristic and slope heuristic, respectively and 

ji,η  is the 

attractiveness of the node Pj when in node Pi. Slope(i,j) is 
the slope(in degrees) of the line from Pi to Pj (x coordinate 
is the distance form Pi and y coordinate is non-spatial 
values).  
 
4.3   Building Candidate Trends. The pheromone trail and 
the heuristic information defined above will now be used by 
the ants to build feasible solutions. Ant agents start from 
different nodes and form a candidate trend by adding nodes 
iteratively. Each ant k has a memory kM to store the 
information of the current path including the nodes, their 
values, distances and also the main direction of the 
candidate trend. The selection of the next node is 
stochastically done by assigning a probability

,i j

kP for ant k 

to select node Pj when the last node of the trend is Pi by the 
following formula: 

 
   

(4.4)  
 
 
Where � is the relative importance of pheromone trail and 

kallowed is the set of nodes that are connected with an 
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edge to node Pi and have also passed the direction filter. 
The direction of the trend of ant k is the direction of its 
second node with respect to its first node. The filter we 
have used here accepts new directions to be the same as the 
trend direction or rotated one step either clockwise or 
counterclockwise. As an example if the direction of the 
trend is South-East then the nodes with direction South-
East, South or East will be in kallowed . 

The addition of a node is done by all of the colony's 
ants independently and in parallel. This process repeats 
until there is no node in the set of allowed nodes for ant k 
or the number of nodes in the trend reaches to TrendLength, 
which is an input integer parameter of the algorithm. 
 
4.4   Updating the Pheromone Trail. For updating the 
pheromone trail, we chose the quality of the trend. This 
quality is evaluated by the r2 value of the linear regression. 
This value is a fraction between 0.0 and 1.0, and has no 
units. The better you can predict Y from X, the nearer is 
this value to 1.0. If we call an iteration of the algorithm: the 
possible addition of nodes by m ants, then in every 
TrendLength iterations of the algorithm (called a cycle) 
each ant completes its candidate trend. At this time the trail 
intensity is updated by the following formulas: 
 
(4.5) 
 
(4.6) 
 
 
(4.7) 
 
 
Where � is a coefficient such that (1-�) is the evaporation 
of trail between cycle t and t+1. The confidence(k) is the 
value of r2 for the regression line of the nodes present in the 
trend detected by ant k and Q is a constant. 
 
5.  Experimental Results 
In this section we provide the experimental results to study 
the properties of our algorithm and to compare it with the 
algorithm proposed in�[6]. 

In Table 1 (a) the properties of the neighborhood graph 
are given and in (b) some statistics for the values we were 
searching their spatial trends (i.e. the number of long term 
accounts in each bank agency point) are provided. 

 
                    Table 1 (a): Node values 

             (b) Neighborhood graph properties 

Edges Min. 
Degree 

Max. 
Degree 

Avg. 
Degree 

Min 
Distance 

Max 
Distance 

Avg. 
Distance 

1535 2 30 10.23 48 5988 2582 
 

To find the trends of length 10 with our method, we 
gained the best results by putting two ants in each node and 
the values of �, �, � and � being respectively equal to 1, 4, 
0.2 and 0.5. These values were used for the all of the 
experiments.  We considered a path with its confidence (r2) 
over 75% as a valid trend. Figure 4 shows the number of 
trends that the two algorithms found when a certain number 
of paths in the neighborhood graph have been examined by 
the algorithms. 
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   Figure 4: Comparison between the two algorithms 
 

As can be seen the algorithm proposed by ester does 
not use any dynamic guiding heuristic and its performance 
will not improve as examined paths increase. However, our 
proposed method will improve its trend discovery power as 
the colony aggregates its population’s experience gained 
form the previous cycles and soon outperforms the other 
algorithm drastically. Figure 5 shows how the algorithm 
improves its discovery power in search for trends of length 
15. The regression line of the graph confirms a smooth 
increase of the number of trends discovered in each cycle. 
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 Figure 5: Improvement in Trend Discovery of Trend-
Length=15  

 
There is also an evolution observed in the average 
confidence of paths examined in every cycle shown in 
figure 6. This also confirms the improvement of the 
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discovery process in such a way that the confidence values 
of candidate paths increase, although they are not 
considered as valid trends. 
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6.  Conclusion 
In this paper we proposed a new application of ant colony 
optimization for the task of trend detection in spatial data 
mining. This algorithm applies the emergent intelligent 
behavior of ant colonies to handle the huge search space 
encountered in the discovery of this invaluable knowledge. 
We proposed two heuristics for edge selection by ants in 
spatial trend discovery shown to be much more effective 
than the previous ones proposed in the literature �[6]. Our 
algorithm is also independent from the user in a way that it 
does not need a start node and applies no threshold in the 
discovery process. The experiments run on a real banking 
spatial database show that the proposed method 
outperforms the current approaches in performance and 
discovery power. In our future research we will further 
improve the heuristics used and investigate the use of some 
modified versions of ACO like MMACO in spatial trend 
detection. Currently a limitation of our algorithm is that it 
searches for trends of a certain length. We plan to tackle 
this problem by integrating the search process for trends of 
different length.  
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